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Summary. The elementary superposition theorems are presented for enumerating 
chemical compounds that contain achiral and chiral ligands. Subduced cycle 
indices (SCI-CF), partial cycle indices (PCI-CF), and cycle indices (CI-CF) with 
chirality fittingness are defined by starting from unit subduced cycle indices with 
chirality fittingness (USCI-CF). All of these indices afford generating functions 
that are proved to be applicable to combinatorial enumeration. In addition, the 
concept of elementary superposition with and without chirality fittingness is 
proposed to provide the elementary superposition theorems. These theorems 
provide us with a new methodology of enumerating compounds, in which the 
numbers of isomers are obtained without relying on generating functions and are 
itemized with respect to molecular formulas (weights) and symmetries. The ® 
operation is defined on the basis of the elementary superposition. Thereby, we 
derive superposition theorems concerning the PCI-CFs and the CI-CFs. These 
are applicable to combinatorial enumeration. 

Key words: Unit subduced cycle index - Partial cycle index - Cycle index - Chi- 
rality fittingness - Elementary superposition 

I. Introduction 

Enumeration of chemical compounds has been accomplished by various methods 
[1]. Thus, according to enumeration problems to be solved, we can employ the 
Pólya-Redfield theorem [2-4] the Read-Redfield superposition theorem [4-6], 
methods based on double cosets [7-9], and methods using tables of marks 
[10-12]. We have recently reported an alternative method based on unit sub- 
duced cycle indices (the USCI approach) [13-15]. 

In these methods, chemical compounds are recognized as a kind of graphs, 
where their atoms and bonds correspond to vertices and edges in graphs. This 
fact implies that the atoms or vertices are regarded as being structureless. In 
other words, effects of (roto)reftection operations on the atoms are unnecessary 
to be considered, because the mirror image of each atom is identical with the 
atom itself. 
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On the other hand, chemical compounds are alternatively considered to be 
composed of ligands and bonds. According to this formulation, we should take 
account of such effects as chirality/achirality of ligands [16, 17]. A pioneering 
work has appeared to treat such chirality and achirality of ligands [12]. We 
ourselves have extended the USCI approach to be applicable to this type of 
enumeration [18], where we introduced the concept of chirality fittingness [ 19] 
and defined unit subduced eycle indices with chirality fittingness (USCI-CFs) in 
place of simple USCIs. 

The original version of the USCI approach has been based on generating 
functions. Without using such generating functions, we have reported an alterna- 
tive method eombining USCIs and the superposition concept [20]. However, the 
strict proof of the latter treatment and the extension to use USCI-CFs have not 
been reported. These issues are the objects of the present paper. 

2. Indiees with ehirality fittingness 

The USCI approach has defined subduced cycle indices (SCIs) [14, 21-24], 
partial cycle indices (PCIs) [25], and cycle indices (CIs) [15] and utilized them for 
enumerating various compounds. We here introduce the corresponding indices 
with chirality fittingness, since we have discussed subduced cycle indices with 
chirality fittingness (SCI-CFs) only [18]. 

Consider a parent molecule of G symmetry that contains lA ] positions (sites), 
which are regarded as constructing a domain (A) and can be replaced by an 
appropriate set of ligands (or atoms). In general, the set of ligands restricts the 
original G symmetry to produce a derivative of 6;; symmetry. For a mathematical 
context, we use the term configuration in place of the terms compound or derivative. 

The positions are partitioned into several orbits, which are subject to a sum 
of coset representations (CRs) [ 14]: 

a~G(/G~), (1) 
i = 1  

where the G~ is a subgroup of G; s is the number of representatives of conjugate 
subgroups of G; and the «, is the multiplication of the G(/G~) CR. Let Gj be a 
subgroup of G. If the set of ligands restriets the original G symmetry to produce 
a derivative of 6;;. symmetry, we have a subduction represented by: 

1"k ; t l  k J, (2) 
i ~ l  i = l  k = l  

where the G(j ) is a subgroup of Gj; vj is the number of representatives of 
conjugate subgroups of Gj; and the/~~J) is the multiplicity of the Gj(/G(j  )) CR. 
The CRs are classified into achiral, neutral, and prochiral parts, which corre- 
spond to homospheric, hemispheric and enantiospheric orbits [19]. The nature of 
having such attributes is referred to as chirality finingness, since it determines 
how the orbits accommodate achiral and/or chiral ligands [26]. In the process of 
the subduction, the A domain is divided into ~~= ~ «i orbits (A~«), each of which 
is subdivided into ~~= ~/~~~J) suborbits (A }{~)). In order to make notations precise, 
we use the following formal expression containing achiral, neutral, and prochiral 
parts: 

Gj(/G(kJ)) = Z(j)G):)(/G(kJ)) + z<bJ)G}a)(/G(k j)) + Z(/)G}°(/G(kJ)), (3) 
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where "(J) Z(d~ ), and o'(') zak, ,t«k are equal to 0 or 1 and satisfy the equation: 

z(~[ ) + z(d? + z(~[ ) = 1. (4) 

The superscripts and subscripts (a, b, and c) denote achiral, neutral, and 
prochiral parts. The right-hand side of Eq. (3) indicates that only one of the 
three parts is effective. In the light of this definition, each subduction appearing 
in the right-hand side of Eq. (2) is represented by: 

k = l  

(5) 

for i = 1, 2 , . . . ,  s and j = 1, 2 , . . . ,  s. The suborbits created by the subduction 
(Eq. (2)) are classified into three categories, i.e.: 

{A (i«) ~ k , 8 ù  that is subject to G}a)(/G(j )) (achiral part) 
A (ic) ~kBb that is subject to G}b)(/G~ ')) (neutral part) , 

a0«) that is subject to G}°(/G~ ')) (prochiral part) kflc 

where the additional subscripts (a, b, and c) designate the assignment of the 
respective suborbits. In the light of this notation, we define a unit subduced cycle 
index with chirality fittingness (USCI-CF) [18] and related indices by the 
following formulas. 

Definition 1 (USCI-CF, SCI-CF, PCI-CF, and CI-CF) 
(1) A unit subduced cycle index with chirality fittingness (USCI-CF) is defined 
as: 

, 1  a ~(J) f l ( Ü ) / ,  x z (J )  fl(iJ)/ . )~(j) ~(i j) \  ZC(G(/G~) $ (7i; aa», bas,, c4,) = [~ ttaa») ~ k (oa») bk ~ tCa») c* k ) (6) 
k = l  

for i = 1, 2 . . . .  , s and j = 1, 2 . . . . .  s, where the symbol djk denotes the length of 
each suborbit: 

4 ,  = [G,I / IG~' ) I  (k  = 1, 2 . . . .  , v , ) ,  (7)  

and the variable aaÆ, bak, and cak are associated with the chirality fittingness. 
J . J./ oJ . . . .  

(2) A subduced cychc mdex wlth chlrahty fittmgness (SCI-CF) IS defined as 
follows on the basis of USCIs (Eq. (6)): 

sc(e,; a~;), b~;), c~:)) 

i = 1  ~ = 1  
«ißO 

Ct i Vj r~ (iŒ~x z(J)  l~(iJ)[l_(iŒ)~ )~(J) l~(iJ)[ (iŒ)'t)~(J) fl(iJ)l 
= 1-[ l-[ ttaä~') o,~ ~ *  toa» ) bk ~k tCajk ) «k ~ J for j = 1, 2 . . . .  , s, 

i = 1  « = 1  k = l  
c e i ~ 0  

where the superscript (ic) represents the dependence upon the A~« orbit. 

(8)  
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(3) A partial cycle index with chirality fittingness (PCI-CF) for G~ group is 
represented by 

PC(Gi;a~~),b(Jj~ ), c+)(~«" = £ fftjiSC(G];a~jk),b~~),c~j~) ) (9) 
j = l  

for i = 1, 2 . . . .  , s, where the superscript (ic) represents the dependence upon the 
A~« orbit; and the symbol r~j~ denotes the il-element of the inverse of the mark 
table of G group. 
(4) A cycle index with chirality fittingness (CI-CF) for G group is represented by 

• " ~djk, = SC(Gs, adsk, "d»,  c~j~ )) . (10) 
j = l  i = 1  

(4') Obviously, an alternative definition of the CI-CF is obtained in terms of the 
PCI-CF. 

CC(G;a(~B, h('«),-'a», ,a»»('«)a =. ,  £ PC(Gi'~ ~(i~x)-djk , ~'ajk,~'('«) C ~~)). (11) 
i = 1  

The variables in the notations of these indices may be abbreviated if this 
abbreviation affords no confusion. Each of the SCI-CFs indicates the site 
partition produced by the restriction to the Gj symmetry. It should be noted that 
USCI-CFs can be precalculated by means of subduction of coset representations. 
Table 1 is the USCI-CF table for D2d group. 

Suppose that the set of ligands: 

OlXl(l  1,2, . m ) ,  ~tQ~ and " ^ . ,  = ..  thQ t ( l = l , 2 , . ,  n) (12) 

is selected from the codomain: 

X = { X I , X 2  . . . . .  Xm;Q1,  Q » . . . , Q ù ; Q . 1 , Q 2  . . . .  ,Qù}, (13) 

where m and n represent non-negative integers (m + n ~ 0); Xz denotes an achiral 
ligand; and Qt and Qt are chiral ligands that construct an enantiomorphic pair 
[27]. The set of ligands occupies the [A I positions of the A domain to afford a 
configuration, where it satisfies the ligand partition" 

t0] ~ 0,+ ~ ù,+ ~ ,~, = IAI. (14) 
l = 1  / = 1  l = 1  

Table 1. Unit subduced cycle indices with chirality fittingness for D2d 

~Cl ~C 2 ~Cl2 ~C s ~$4 ~C2v J.D2 SD2a 

D~A/c,) bl b~ b~ «~ «~ «4 ~ b~ «8 

D2d(/C'2) b I b] b~b z C 2 C 4 C 4 b 2 C 4 
D2d(/Cs)  b 4 b22 b~ a~c 2 c 4 a 2 b 4 a 4 
D2a(/S4) b 2 b 2 b2 c2 a 2 c2 b2 a2 
D2d(/C2v ) b~ bZ~ b 2 a~ c 2 a~ b 2 a 2 
D2d(/D2) b 2 b~ b~ «2 c2 «2 b2 «2 
D2d( / D2d) bi bi bl al al al bi ax 

~~=,rhjj 1/8 1/8 1/4 1/4 1/4 0 0 0 
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As a result, the weight (molecular formula) of the resulting configuration is 
expressed by: 

ù1o = f i  w,~«»o, f i  w,«+,)o, f i  w,=<o,) ~,, (~») 
l=1  l=1  l = 1  

where the symbols wie(X+), wie(Q1), and w;~(0z) represent the weights for the 
cases in which the ligands are associated with the A+« orbit. Let 00/be the number 
of such configurations as having the Wo weight and the Gj symmetry. We refer 
to these configurations as (Wo, Gj)-configurations or as ([0], Gj)-configurations, 
because the Wo weight corresponds to the [0] partition by virtue of Eqs. (14) and 
(15). The 00/value is calculated by the following lemma. 

Lemma 1 [Lemma 2 of [18]] 
The 00/'s are given by the following generating functions: 

~,oojWo=SC(Gj;a~~),l'(+«) c~~ )) ( j = l , 2 ,  s), (16) ) ~ d j k  ~ j " . . 

[0] 

wherein the right-hand side is substituted by the ligand inventories: 

a~;~)= ~ wi:(X+)aJ k, (17) 
l = l  

l=1  l=1  l = 1  
(18) 

«~:,= ~ w,=(~,)+~ + 2 ~ (w,=(o,)wi=(o,»,», 2. (19) 
l=1  / = l  

Let Bo+ be the number of non-equivalent (Wo, G+)-configurations. It is 
calculated by the following theorem. 

Theorem 1 [Theorem 4 of [18]] 
The numbers (Bei) of non-equivalent (Wo, G+)-configurations are obtained by 
solving the equations: 

Bo+ = ~ Oojthji (i = 1, 2 . . . .  , s), (20) 
j = l  

where the symbol th/+ denotes the il-element appearing in the inverse of the mark 
table for G group. 

Chemically speaking, every non-equivalent (Wo, G+)-configuration (or ([0], G/)- 
configuration) corresponds to an isomer with the Wo weight and the (71.-symme- 
try. Hence, we refer to the isomer as a (Wo, Gj)-isomer or as a ([0], G/)-isomer. 
It should be noted that the O0j values for a pair of enantiomers (t h ~ 0t) should 
be added before applied to Theorem 1. Table 2 is the inverse for D2a group, 
which is cited frorn the previous paper [20]. 

A simple example of Theorem 1 has been reported in the previous paper [ 18]. 
We here examine a more complicated case in order to employ this example as a 
standard case for verifying propositions described below. 

Example 1. Consider that the twelve positions of adamantane-2,6-dione (1) of 
D2d symmetry are replaced by a set of ligands selected from the codomain, 
{X, Y,Q,Q}. 
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Table 2. The inverse of the mark table for D2a point group 

S. Fujita 

D2d D2d D2a D2d Dza D2a D2a D2a sum a 
(/Cl) (/C2) ( /CŒ) (/Cs) (/84) ( /C2v)  (/D2) (/D2a) 

C l 1/8 0 0 0 0 0 0 0 1/8 
Cz -1/8 I/4 0 0 0 0 0 0 1/8 
C~ -1/4 0 1/2 0 0 0 0 0 1/4 
C s -1/4  0 0 1/2 0 0 0 0 1/4 
S 4 0 --1/4 0 0 1/2 0 0 0 1/4 
C2v 1/4 -1/4 0 -1/2 0 1/2 0 0 0 
0 2 1/4 --1/4 --1/2 0 0 0 1/2 0 0 
D2d 0 1/2 0 0 --1/2 --1/2 --1/2 1 0 

a surrt = ~s=l  r~ji 

"o 

Q) 1 

The twelve pos i t ions  are pa r t i t ioned  into two orbi ts ,  i.e., the eight br idge  
pos i t ions  subject  to D2d(/C1) and  the four  b r idgehead  pos i t ions  subject  to 
D2a(/Cs). In terms o f  Def. 1 (2), we have the SCIs for this case: 

and  

(b~,)(ó 4) 

(b4)(b~) 
(b4)(ó~) 

(c~)(a2c2) 

(c])(c4) 
(c])(a 2) 

(b])(b4) 

= b l 2 = ( x + y + q + ~ )  ~2 for C~, (21) 

= b6 = (x2 _~_ y2 -t- q2 _~_ ~2)6 for C» (22) 

= b  6 = ( x  2 + y 2 + q 2 + ~ 2 ) 6  for C~, (23) 

=a2c~=(x+y)2(x2+y2+2qO)5  for Cs, (24) 

=- c 3 = (x '  q- y4 -I- 2q2q2) 3 for 54, (25) 

=a2c]=(x2+y2)2(x2+y2+2qO)  z for C2v, (26) 

=b3=(x4--[-y4-.~-q4--[-q4) 3 for 02, (27) 

(¢8)(a4) = a4c 8 ~- (X 4 + y4)(X8 -t- y8 + 2q4~4) for  D2a. (28) 

The  first pa i r  o f  parentheses  in the le f t -hand side o f  each SCI consists  o f  the 
U S C I  for the D2«(/C1) orbi t  and  the second conta ins  the onë for  the D2a(/C~) 
orbit .  Al l  o f  these USCIs  are selected f rom the U S C I : C F  table  for  D2a group  
(Table  1). Genera t ing  funct ions ( the r igb t -hand  sides) are ob ta ined  by  in t roduc-  
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ing the following l igand inventories into the SCIs. 

ad = X d + yd, 

ba = xa + ya  + qa + ~a, 

and 

Ca = x a + ya  + 2(q~)a/2. 

(29) 

(30) 

(31) 

Expans ion  of these generat ing funct ions affords the Q0j values as the co- 
efficients of  Wo terms, several of  which are collected in Table  3. We regard Table  
3 as a matr ix  and  mult iply this by the inverse matr ix  (Table  2). As the result, we 
have Table  4. When  we have W o =x8y°q2O 2 and  so forth, we denote 
[0] = [8, 0; 2; 2] and  so forth. 

Figure 1 depicts three ([8, 0; 2; 2], S4)-isomers and  two ([8, 0; 2; 2], C » ) -  
isomers, where each X a tom is expressed by the symbol  ©. All of  these isomers 
are classified into so-called meso-compounds .  The numbers  of these isomers 
appear  in the [8, 0; 2; 2]-row of Table  4. [~ 

By start ing from Theorem 1, we have: 

E B o i W o  = E  ~ eojrhJi W o -  rhji OojWo • (32) 
[01 [0] = 1 / =  

Since the last summat ion  of the r ight-hand side has been evaluated by Lemma 1, 
we summarize this derivat ion as follows by means  of the P C I - C F  defined in Der. 
1 (3). 

Tkeorem 2 (Enumera t i on  by PCI -CF)  
The Boi välues are obta ined as the coefficients appearing in generat ing functions:  

E B o ,  Wo=PC(Gi ;a~~) ,b~~) , c~~  )) ( i = 1 , 2  . . . .  ,s) ,  (33) 
[0] 

Table 3. Several examples of the Q0j values 

Power of Symmetry of derivatives 
x Y q ~l Cl C 2 C2 C s S 4 C2v D e D2a 

12 0 0 0 1 1 1 1 1 1 1 1 
ll 1 0 0 12 0 0 2 0 0 0 0 

10 2 0 0 66 6 6 6 0 2 0 0 
9 3 0 0 220 0 0 10 0 0 0 0 
8 4 0 0 495 15 15 15 3 3 3 1 
7 5 0 0 792 0 0 20 0 0 0 0 
6 6 0 0 924 20 20 20 0 4 0 0 
8 0 2 2 2970 30 30 40 6 4 0 0 
7 1 2 2 23760 0 0 80 0 0 0 0 
6 2 2 2 83160 120 120 160 0 8 0 0 
5 3 2 2 166320 0 0 240 0 0 0 0 
4 4 2 2 207900 180 180 240 12 8 0 0 
4 0 4 4 34650 90 90 80 12 4 6 2 
3 1 4 4 138600 0 0 160 0 0 0 0 
2 2 4 4 207900 180 180 160 0 8 0 0 
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Fig. 1. ([8, 0; 2; 2], Sc)- and 
([8, 0; 2; 2], C»)- isomers  derived 
from adamantane-2,6-dione (1). 
The symbol © denotes an X 
atom; and Q and ~ a r e a  pair of  

enantiomorphic ligands 

Table 4. The numbers of  (Wo, Gj)-isomers 

Power of  Symmetry of  derivatives Total 
x Y q ~ C1 C2 CI2 Cs S 4 C2v D 2 D2d number  

12 0 0 0 0 0 0 0 0 0 0 1 1 
11 1 0 0 1 0 0 1 0 0 0 0 2 
10 2 0 0 5 1 3 2 0 1 0 0 12 
9 3 0 0 25 0 0 5 0 0 0 0 30 
8 4 0 0 54 2 6 6 1 1 1 I 72 
7 5 0 0 94 0 0 10 0 0 0 0 104 
6 6 0 0 104 4 10 8 0 2 0 0 128 
8 0 2 2 351 5 15 18 3 2 0 0 394 
7 1 2 2 2950 0 0 40 0 0 0 0 2990 
6 2 2 2 10312 28 60 76 0 4 0 0 10480 
5 3 2 2 20730 0 0 120 0 0 0 0 20850 
4 4 2 2 25862 40 90 116 6 4 0 0 26118 
4 0 4 4 4280 18 42 38 5 1 2 2 4388 
3 1 4 4 17285 0 0 80 0 0 0 0 17365 
2 2 4 4 25882 43 90 76 0 4 0 0 26095 
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where each variable is subst i tuted by: 

a~ä~~)= ~ Wie(xt)djh, (34) 
l = 1  

~ ~ =  
/ = 1  / = I  l = 1  

C~j~ , =  ~ Wi~(X,) djk ÷ 2 ~ (w,o¢(Q,)wict(O,)) djk/2. (36) 
l = 1  l = 1  

This theorem is a generat ing-funct ion version of  L e m m a  1 and Theorem 1. 

Example 2. By means  of  Def.  1 (3), we calculate P C I - C F s  for  the same case as 
Example  1. The following P C I - C F s  are easily obta ined f rom the SCI -CFs  
described in Eqs. ( 21 -28 )  and Table  2. 

PC(C1) 11.12 3 6 1 _ 2 _ 5 - , ~ 2 _ 2  1 3 (37) -= gu I -- gb 2 - ~u I c 2 -'1- ~£t2c 4 ÷ ~b 4 

PC(C2) , 6 1 3 1~2~2 1/~3_1~ ~ (38) = ab2 - ~c4 - ~u2c4 - ~t)4 "1- ~U41g 8 

PC(C'2) 1 6 , 3 (39) = $ b 2 - g b 4  

p C ( G  ) 1 _ 2 ^ 5 '  2 2  (40) 
Z u 1 C 2  - -  ga2 C4 

PC(S4) ' 3 1  ( 4 1 )  = iC 4 -- ga4c 8 

PC(C2v ) 1 2 2 1 ( 4 2 )  = ga2c 4 - ga4c 8 

PC(D2) 1 3 1 c (43) - - - ~ b 4 - - ~ a 4  8 

PC(D2a) = a4c8. (44) 

After  introducing the ligand inventories (Eqs. (29-31)) ,  we expand the resulting 
generat ing functions. Fo r  example,  the numbers  o f  C2~ isomers are obta ined by 
means  of  Eq. (42). 

G ( x , y , q , ~ )  1 2 =- 5(X ÷ y2)2(x4 ÷ y4 + 2q2~2) 1 4 - -  ~(X ÷ y4)(X8 ÷ y8 + 2q4~4) 

= (x 10y2 + x2y,O) + (xSy, + x4yS) + 2x6y6 + 2(xSq~O~ + y8q:q2) 

+ 4(x6y2q2~t2 + x2y6q2~ 2) + 4x4y4q2~ 2 

+ (x«q4~4 + y4q404) + 4x2y2q4~4. (45) 

Several coefficients in this equat ion  have appeared  in the C »  co lumn of  Table  4. 
[] 

Let  the symbol  Bi be the number  of  non-equivalent  configurations with 6?, 
symmetry .  Then,  Theo rem 1 also affords: 

[ o ]  [ 0 ]  = 1 

Let Oj be defined by: 

= ~ t h J ; ( ~ Q ° J )  " j = l  (46) 

Qj -- ~"~ Q0j- 
[01 

Then,  Eq. (46) creates a corollary: 

(47) 
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Corollary 1 
The number (Bi) is obtained by: 

Bi = ~ «/rhji (i = 1, 2 . . . . .  s). (48) 
j = l  

This corollary provides an alternative proof of Theorem 3 of [18]. 
Let Bo be the number of non-equivalent configurations with the Wo weight. 

Theorem 1 produces: 

B o = ~  Boi= ~, ~ Qo/hji= ~ (~fftji)Qoj. (49) 
i = l  i = l j = l  j = l  i = 1  

Thus, we arrive at a corollary. 

Corollary 2 
The number (Bo) is obtained by: 

The inner sum of the right-hand side can be obtained by summing up the Gj row 
of the inverse of the mark table of G. For instance, the value for each subgroup 
for D2« is listed in the rightmost column of Table 2. 

This corollary is further converted into: 

2BoWo=£~'(~" fflji)QojWo --~'~ (~ff t j i )~QojW O. ( 5 1 )  
[0] [0] j = l i = 1 j = 1 i = 1 [0] 

Since the last summation of the right-hand side has been evaluated by Lemma 1, 
we summarize this derivation as follows by means of the CI-CF defined in Def. 
1 (4). 

Theorem 3 (Enumeration by CI-CF) 
The B o value is obtained by a generating function: 

~', Bo Wo = CC(Gi; a~~ ~, b ~; ~, c(~ß)), (52) 
[01 

where each variable is substituted by: 

a~j] ~ = ~ wi«(Xl)dJk, (53) 
l = 1  

l = 1  l = 1  l = 1  

(54) 

«~~~~ = ~ we~(Xt)d» + 2 ~ (wi~(Q,)wi~(O,))aJ kl2. (55) 
l = 1  l = 1  

Example 3. By means of Def. 1 (4), we calculate CI-CFs for the same case as 
Example 1. The following CI-CF is easily obtained from the SCI-CFs described 
in Eqs. (21-28) and the data listed in the rightmost column of Table 2 (or in the 
bottom of Table 1). Alternatively, the CI-CF can be obtained by summing up all 
of the PCI-CFs (Eqs. (37-44)) on the basis of Def. 1 (4'). 

CC(D2d) - lh12 _a_ 3 / 1 6  1 - 2  _ 5  1 3 (56) 
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After introducing the ligand inventories (Eqs. (29-31)), we expand the resulting 
generating function. Several coefficients in this equation have appeared in the 
rightmost column of Table 4. [] 

3. Elementary superposition with ehirality fittingness 

3. I. Extended cycle indices 

For manipulating the chirality/achirality problem, we introduce two types of 
cycle indices (extended cycle indices), because chiral ligands behave in different 
ways according to environment [19]. If  we take account of achiral ligands only, 
we can develop a simpler treatment as shown in Appendix A. 

Consider n chiral ligands of the same kind (Q) and the same number of their 
enantiomorphic chiral ligands (Q). If  the set of ligands Qn~n is placed in an 
achiral environment and if it conserves this achirality, two ligands with opposite 
chirality (QQ) behave pairwise. This fact can be verified by the meso-isomers 
depicted in Fig. 1. Hence, we shall consider a symmetric group of  degree n 
(denoted as ~-En~), which acts on n sets of  QQ. The cycle index of the group is 
represented by: 

1 
CI($-t"l; C2d) = }-', C vlc~42"''c~~ "'" c~_~, (57) 

(v) Vl!2Vlv2 !4~2' ' " Vl!(2/) ~ t ' ' "  vù!(2n) v" 2 

where the summation runs over the partition: 

(v) " ~ lvt = n. (58) 
l =1  

If the set of ligands Qn0e is placed in a chiral environment, the sets of  Qn 
and of  Qe behave in distinct ways. Note that n may be equal to or different from 
tl. We consider a direct product $En~ X $t~1 that is concerned with the respective 
sets. It follows that we consider the corresponding cycle index: 

CI($[nl ® $[~1; ba) = CI($ [~l; be) x CI($[~1; ba) 

: ( 2  ~ l b~l,b[2...b:ù) 
\(~) v I !1 1v212~2 • • • vù !n vù 

x f TI~~ ~ T2~2.. " O~!t~% 
1" 2'  

where the summations run over the partitions: 

(v)" ~ /v t = n (60) 
l =1  

and 

(0"  ~ l~ = t~. (61) 
I~1  

In general, let us consider a compound that contains achiral and chiral 
ligands selected from X (Eq. (13)). According to the ligand partition represented 
by Eq. (14), we define two distinct permutation groups. 

H = S [01] (~  S [02] (~) ' "  " (~ S rom ] @ ~ tll (~ ~ tl2 (~" " " (~ ~ tln, (62) 
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for r/t = qt (l = 1, 2 . . . . .  n) and 

H "  = S[°l] (~  S[°2] Q • • • (~  S[°m] @ $ ~1 @ $ 0 1  (~  $~2 ~ $~2 ~ . . . (~ $?ln @ $On (63) 

for any ligand partition. 
As a result, we have the definition of extended cycle indices: 

CI(H; sc; ca) = CI(St°'l; sa) x CI(St°21; sa) × • " • x CI(St°,ù1; sa) 

x CI(~"1; C2d) X CI($%2; c2a) x " "  x CI($~"; c2a), (64) 

and 

CI(H';  sa, ba) = CI(St°'~; sa) x CI(St°21; sa) × • • • x CI(St°ml; sa) 

x CI($"1; ha) × CI($°1; ha) x CI($~2; ba) 

x CI($~2; ba) x . . .  × CI($~ù; ba) x CI($~ù; ba). (65) 

We refer by the term regular ligand partition to a case in which r/t = Ot holds 
for W. In this case, we have to employ H '  or H according to G s. This 
corresponds to the fact that the regular ligand partition is compatible with an 
achiral Gj as weil as with a chiral Gj. On the other hand, a case in which r h v~ ~t 
holds for 3l is called an irregular ligandpartition. In this case, we have to use H' ,  
not to employ H because of  Eq. (62). This means that the irregular ligand 
partition is compatible with a chiral G s but is incapable of being associated with 
an achiral Gj. For  simplicity's sake, we sum up these facts by defining H: 

• For  a regular ligand partition: 

~ =  {H 
H" 

• for an irregular ligand partition: 

0 = ,[none 

In addition, we define two cases: 

• For  a regular ligand partition: 

= ~ « I ( H ; s d ,  ea) 
CI(ffI; sa, ba, ca) [ C I ( H  ; sa, ba) 

• for an irregular ligand partition: {0 
CI(_O; sa, ba, ca) = CI(H';  sa, ba) 

for an achiral Gj (66) 
for a chiral Gj 

for an achiral Gj (67) 
for a chiral Gj 

for an achiral G s (68) 
for a chiral Gj 

for an achiral G s (69) 
for a chiral G s 

3.2. The @ operation 

In order to simplify our discussions, we introduce a new operation (®)  between 
two polynomials. Let A be a polynomial that is associated with a set of site 
partitions, i.e.: 

A = ~ ar ~~~~~2...a~pb~,b~2...  h~~e*,e¢2. -pv l  -2 "'Cp~p, (70) ~, (,u(A))'* 1 '*2 
(~(A)) 
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where the ~b I is equal to 0 if l is odd; and the powers run over the site partitions 
represented by: 

( ] , £ ( A ) )  : (j/,t 1 --t- v I Av q ~ l )  -j- (]-~2 --t- 112 + (])2) .3¢_....]_ (]Ap -3v Vp + ~p) = p  iP = lA 1)- 
(71) 

Let B be a polynomial that is associated with a set of ligand partitions, i.e.: 

B ~, ul ~~ . . . . .  = N(ù(m)sl sz ..  sfpbyib~~ t«'p»~'~~~'2 " ù p  ~ ,  t, 2 " "  c~;% (72) 
(~(B)) 

where the q~} is equal to 0 if l is odd; and the powers run over the ligand 
partitions represented by: 

(~(B))'(#,+v~+é~)+(~;+v;+ó;)+.-.+(~~+v;+é~)=p (p=[AI). 
(73) 

A monomial contained in the polynomial B is defined as being compatible with 
a monomial contained in the polynomial A if we have: 

B z + v ~ + d p t = # ; + v ~ + ~ b ;  and ~bz~>~b ~ for alt l .  (74) 

We denote this condition by the symbol (#(A)) = (#(B)). By omitting incompat- 
ible monomials, we define the ® operation by: 

P P 
B @ A = ~ N(u(a~)N(~,(s)~ 1-[ (#,!l'vt!l~'4), !le)') 1-[ a~/'b~/'«~ '' 

(u(A)) = (/x(B)) l = ,  l = 1 

In addition, we define: 

(75) 

P 
N { B  ® A}  = Z N(~(A))N(~(m ) y[  (it,!l~,vt!lV,c~,!l°,). (76) 

(#(A)) = (~(B)) l = 1 

Consider t ligand partitions, to which we assign polynomials B,. Then, we 
have: (H) ~ e f  

® B~ ® A = (B, ® (B,_1 ® ("" ® (B2 ® (~, ® A))))) 

(~(A)) = (~(Bc)) c = 1 

x #t [l~'vl!lV'(ot ! le~ I~ a~~b['c~ t. (77) 
/ = 1  l = 1  

(78) 

Thereby, we define: 

N ® B~ G A  = 
e = 1 (~(A)) = (U(B~)) 

3.3. Chiral site partition 

Let us consider a case in which a chiral group Gj affords a chiral site partition 
((#)). This situation allows an irregular ligand partition as well as a regular 
ligand partition. For both of the ligand partitions, we should consider H' .  
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Suppose that an irregular ligand partition [0] (Eq. (14) and r/c # r~c for SI) is 
associated with the H' .  For evaluating Qoj, we consider the site partition (v) 
corresponding to the SCI-CF (Def. 1 (2)), which is rewritten as being: 

S(Gj;  ba») = b~'b[ 2 " " " bVm m, (79) 

where 

(v) " ~ lv, = m (=lA I)" (80) 
l = 1  

The discussion in Appendix A holds for this case if H ° is replaced by H' .  Hence, 
we obtain: 

N,.,  
Vl [lVlv2!2 ~2" " " Vm !m vr". (81) 

~o: = I n  l 
When we apply the ® operation to this case, we obtain: 

N { C I ( H ' )  ® S C ( G j ) }  = N(v) Vl]lVlv2!2v2. . . Vm!mVm. (82) 

Comparison between Eq. (81) and Eq. (82) affords the following lemma. The 
present discussion is also true for a regular ligand partition applied to the chiral 
aj. 
L e m m a  2 (Elementary superposition for a chiral site partition) 
Let Gj be a chiral subgroup of G. Let [0] be an irregular or a regular ligand 
partition. Then, the Qoj value is obtained by: 

Qoj = N { C I ( H ' )  ® S C ( G j ) }  ( j  = 1, 2 . . . . .  s). (83) 

It should be noted that the operand of the right-hand side of Eq. (83) is a 
monomial, the concrete form of which is represented by Eq. (81). The term 
"elementary superposition" comes from this feature. If  the Ooj values obtained by 
this theorem are introduced into Theorem 1, we can obtain the numbers of 
non-equivalent configurations. 

3.4. Prochiral  site parti t ion 

Let us consider a case in which an achiral group Gj affords a prochiral site 
partition ((#)). This situation requires a regular ligand partition [0] (Eq. (14)) 
which is associated with the H. For evaluating êoj, we consider the site partition 
(#) corresponding to the SCI-CF (Def. 1 (2)), which is rewritten as being: 

SC(Gj; Ædjk) = Uln/~l~ß2u2 . . . .  u t ~ " » * ' " * 2 . . . ~ ,  ~2 c~ r~ (84) 

where 

(#): ~ l(#, + ~bt) = m  (=lA I). (85) 
/ = 1  

Note that c~ is equal to 0 if l is odd. Obviously, the SCI-CF is a monomial. Let 
us examine configurations with the site partition (#) (Eq. (85)). Suppose that the 
configurations are fixed on the operations (permutations) of H. Then, the value 
Ooj is the number of orbits of configurations generated by the action of H. We 
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obtain the following equation by means of the Cauchy-Frobenius lemma 
(so-called Burnside's lemma) [28]. 

1 
n(h~, (86) 

~0j -1/41 h~» 

where n(h) denotes the number of configurations that are fixed by H. 
If  h (~/4) fixes one of the configurations having the site partition ((#)), it 

must possess the same cycle structure as Eq. (85). The same discussion as the 
previous section holds for the achiral part represented by a of Eq. (84). Thereby, 
we obtain: 

Bi !1"1#2 ]2u2 " " " [~m !m~m (87) 

configurations that are fixed by h. 
For the prochiral part represented by c of Eq. (84), we should take account 

of pairwise behavior described above. A suborbit of length l in the configuration 
has l/2 chiral ligands of the same kind and the same number of the enantiomor- 
phic ligands, affording l/2 enantiotopic pairs of ligands [29]. If the pairs are 
permuted cyclically, they afford an equivalent configuration that is also fixed by 
h; there are l/2 different ways for each suborbit of length l and (l/2) et ways in all. 
Moreover, there exist two meso isomers for each permutation; hence we have 2 e'. 
We are able to alter the order of the suborbits of length l in #z t ways. For each 
/, we obtain: 

(¤/2) e,2e,~bl ! = ~b t !l e,. 

When 1 runs from 1 to m, we have: 

~1 ]le'~b2 !2e2' " " (~m ! m e "  (88) 

configurations that are fixed by h. Equations (87) and (88) hold for any 
operation (permutation) that has the same cycle structure as h. The number of 
such operations is denoted by the symbol N(~~. Thereby, Eq. (86) is converted 
into: 

N o o ,  w ~.i, T2u2 (89) O0j = ~ m . 1  ,-2. " '"  #m!mm~ßl!lelÓ2!2ea""' I'tm !m4'' 

We apply the ® operation to this case: 

N{C/(H) ® SC(~)}  N(~)/21!1~11-t2 !2~2 = ~ l  • ' '  ,u,, !tau"4), !le'~b2!2 eg. . .  #m !me" (90) 

For simplicity's sake, the operands of cycle indices are abbreviated. Comparison 
between Eq. (89) and Eq. (90) affords the following lemma. 

Lemrna 3 (Elementary superposition for a prochiral site partition) 
Let G s be an achiral subgroup of G. Let [0] be a regular ligand partition. The 0oj 
value is obtained by: 

Ooj = N { C I ( H )  ® S C ( g ) }  ( j  = 1, 2 . . . .  , s). (91) 

Note again that the CI(/4) ® SC(Gs) in Eq. (91) is a monomial. If the 00j values 
obtained by this theorem are introduced into Theorem 1, we can obtain the 
numbers of non-equivalent configurations. 

Example  4. For illustrating Lemmas 2 and 3, we reexamine the case of Example 
1. Let us consider a regular ligand partition, [0] = [4, 4; 2, 2], which is concerned 
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with isomers having J ( 4 y 4 Q 2 0 2 .  F o r  this purpose, we consider: 

H = S [4] ® S [4] ® $'t2] 

and 

//," = S[4]  ® S[4] ® $[2] ® ,~[2] 

The corresponding extended cycle indices are calculated as: 
1 2 CI(H) = [~4(6s4 + Ss,s3 + 3s 2 + 6s2s2 + s4)] 2 x ~(c2 + c4) 

(s8c2~ + 36s2e« + 36s2s4c4 + . . . )  (92) -~4×~4×~x 
1 2 CI(H') = [2Jg(6S4 q- 8siS 3 + 3S 2 + 6S~Se + «4)]2 x [~(b~ + b2)] z 

- ~ x ~ x ~ x ~ x l  1 ' (s~b 4+9s4b2~+36s,s2b~2 3 2+36s]b 2+36s2s4b~.. .) .  

(93) 

The condition described in Eq. (74) allows us to convert a variable s into any of 
a, b, and c so long as the subscript of  the variable is conserved. This allowance 
corresponds to the fact that achiral ligands are capable of  occupying any kinds 
of orbits. For  Cl, we select s8b 4 from CI(H') (Eq. (93)) as being compatible with 
the SCI (b I 2) of  C~. It follows that: 

~oc, =~4 x ~4 x ½ x ½ x 11212! = 207900. (94) 

For C2 and C~, the term 9s4b 2 of CI(H') (Eq. (93)) is compatible with the SCI 
(b6). Thereby, we have: 

1 0oc2 = 0oc'2 = 1 x i x ½ x ~ x 9 x 266! = 180. (95) 

36sls2c 2 from CI(I-I) (Eq. (92)) as being compatible with the For  Cs, we select 2 3 2 
SCI (a~cS~) of Co. We obtain: 

1 1 ~oc« = ~  x I x ~ x 

For  $4, the term 36s2c4 of  C/(H) (Eq. 
$4. Hence, we have: 

36 x 122!2»5! = 240. (96) 

(92)) is compatible with the SCI (c 4) of  

1 ~os4 = 2~ x ~4 x ~ x 36 × 433! = 12. (97) 

For  C2v, the term 36s2s4e« appearing in CI(H) (Eq. (92)) is compatible with the 
SCI (a2c24) of C».  Hence, we have: 

Qoc» = ~4 x ~4 x i x 36 x 222!422! = 8. (98) 

Since the SCIs for D2 and D2d do not agree with any of the terms appearing in 
H or H ' ,  both 00l)2 and ~02)2« are equal to 0. These values are collected to form 
a row vector: 

(207900 180 180 240 12 8 0 0), 

which is equal to the x4y4q2q 2 r o w  Of Table 3. The multiplication of the row 
vector by the inverse (Table 2) affords: 

(25862 40 90 116 6 4 0 0), 

which is equal to the x4y4q2~ 2 r o w  of Table 4. [] 

Lemmas 2 and 3 provide the number of  non-equivalent configurations when 
the 00j's obtained are introduced into Theorem 1. For  further derivation, we 
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integrate Lemmas 2 and 3 into the following theorem by using H described 
above (Eqs. (66) and (67)). 

Theorem 4 (Elementary superposition with chirality fittingness) 
The O0j value is obtained by: 

Qoj = N{CI(~O ® SC(Gj)} (j = 1, 2 , . . ,  s). (99) 

4. Partial superposiüon and superposiüon with chirality fittingness 

We formally apply the ® operation to the PCI-CF (Deß 1 (3)). It follows that: 

N{CI(fI) ® PC(Gi)} 

= N {CI(~7) ® j=l ~ rhjiSC(Gj)} (100) 

= ~ rhj~N{CI(ff-I) ® SC(Gj)} (101) 
j = l  

= ~ rhj, Ooj =Bo,, (102) 
j = l  

where we use Theorem 4 for the 00j values; and Theorem 1 for the Bo~ values. 
Hence, we end up with the following theorem. 

Theorem 5 (Partial superposition with chirality fittingness) 
The number (Bo~) of non-equivalent configurations with Wo and G~ is obtained by: 

Bo, = N{CI(ffl) ® PC(G~)} (i = 1, 2 . . . . .  s). (103) 

Example 5. For illustrating Theorem 5, we reexamine the case of Example 1. This 
is a continuation of Example 4. Thus, we use/-/and H'  and their extended cycle 
indices (Eqs. (92) and (93)). For example, we calculate Bocs. We have obtained 
PC(Cs) (Eq. (40)) in Example 2. Thereby, Theorem 5 holds for this case affording: 

1 1 Boc s = ½ x ~ x -~ x ½ × 36 x 122!255!--~×~4 ×2~x~x36×222!422! 

=½(240- 8) = 116. 

This is equal to the value in the intersection between the x4y4q2~ 2 r o w  and the 
C~ column of Table 4. Obviously, the process of this calculation contains Oocs and 
Qoc2~ ; thus, it corresponds to a portion of the matrix multiplication described in 
Example 4. [] 

By starting from the CI-CF (Def. 1 (4')), we have: 

N{CI(ffl) ® CC(G)} 

= N {CI(IYl) ® ,=,~ PC(G~)} (104) 

= ~ N{CI(fI) ® PC(G~)} (105) 
i = l  

= ~ Boi =Bo, (106) 
i = 1  

where we use Theorem 5. Hence, we arrive at the following theorem. 
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Theorem 6 (Superposition with chirality fittingness) 
The number (Bo) of non-equivalent configurations with Wo is obtained by: 

B o = N{CI(ffI) ® CC(G)}. (107) 

Example 6. We again examine the case of Example 1. This is a continuation of  
Example 4. Thus, we use the H and H '  and their extended cycle indices (Eqs. 
(92) and (93)). In this example, we calculate Bo. We have obtained CC(D2a) (Eq. 
(56)) in Example 3. Thereby, Theorem 6 holds for this case as follows. 

1 1 1 l 1 B 0 = g x l x l x ½ x ~ x  11212! +83- x ~ x 2~ x ~ x ~ x 9 x 266! 
1 1 l 1 + ~ x ~ x 1 x 7 x 36 x 122!2»5[ + ~ x 1 x ~4 x ~ x 36 x 433! 

1 3 + !  1 = ~ x 2 0 7 9 0 0 + ~ x  180 4 x 2 4 0 + ~ x  12=26118. 

This is equal to the value that appears in the rightmost side of the x4y4q202 row 
of Table 4. It should be noted that the value is also obtained by: 

Bo 1 + 1 ~ 0 C 2  ..~ I 1 1 = g~OC 1 4ŒOC~ -1-"4~0C s -~- 4~0S 4, 

in which each term is adopted from Example 4. The last equation is a direct 
application of Corollary 2. [] 

5. Multicomponent elementary superposition with chirality fittingness 

In this section, we extend the theorems described in the preceding section. Let us 
consider permutation groups H'~ (e = 1, 2 , . . . ,  t) that are associated with appro- 
priate ligand partitions [0(°], as discussed for H' (Lemma 2). Lemma 2 also 
holds for each of the groups (H'~). It follows that: 

Q~ = N{CI(H'~) ® SC(Gj)}, (108) 

where ~~~ denotes the number of fixed configurations on the effect of H~. When 
E runs over 1 from t, the t events are capable of taking place independently. The 
equations described for H ° (Eq. (132)) also hold for this case if H" is used in 
place of H °. Hence, we have the following extension of  Lemma 2. 

Lemma 4 (Multicomponent elementary superposition for a chiral site partition) 
Let Gj be a chiral subgroup of G. Let [0] be an irregular or a regular ligand 
partition. The ~0j values are represented by: 

~°J= f-I ~~~J)=N{(® (-I «I(H'c)) ~=1 ( j = l , 2 , . . , s ) ,  (109) 

where Q~~~ denote the number of fixed configurations on the effect of H~ 
(E = 1, 2 . . . .  , t ) .  

Let us consider permutation groups H, (E = 1, 2 . . . . .  t) that are associated 
with an appropriate ligand partition ([0(°]), as discussed for H (Lemma 3). 
Lemma 3 is true for the H,. Hence, we have the following extension of  Lemma 
3. 

Lemma 5 (Multicomponent elementary superposition for an achiral site parti- 
tion) 
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Let Gj be an achiral subgroup of G. This requires a regular ligand partition [0]. 
In this case, the 00j values are represented by: 

~0,= H ~~»~{(~ H « 1 ~ ~ » ) ~ ~ « o » } ~ ~ ~  ~ = ~  ~»1,2, ~,, ~~~0, 
where ê~? denote the number of fixed configurations on the effect of H« 
(e = 1, 2 ,  . . ,  t). 

The equation in the braces of Eq. (110) is a monomial. Lemmas 4 and 5 are 
summarized to a theorem. 

Theorem 7 (Multicomponent elementary superposition with chirality fittingness) 
The O0j values are represented by: 

The ~0j values obtained by Theorem 7 (equivalently by Lemmas 4 and 5) are 
introduced into Theorem 1 to afford the number of (W o, Gi)-isomers. They are 
also applicable to Corollary 1 and Corollary 2. 

When we formally construct the ® product concerning the PCI-CF (Def. 1 
(3)), we have the following theorem. 

Theorem 8 (Multicomponent partial superposition with chirality fittingness) 
The number Boi of non-equivalent (Wo, Gi)-configurations is represented by: 

Boi = ~ oojrnji 
j = l  

[ \  B J e = l  

Let us hext construct the ® product concerning the CI-CF. Then we have 
the following theorem. 

Theorem 9 (Multicomponent superposition with chirality fittingness) 
The number B o of non-equivalent Wo-configurations is represented by: 

Bo = ~ Boi 
i= I  

Example 7. For illustrating these theorems, we examine a hypothetical tWO-Ste p 
conversion depicted in Fig. 2. 

We consider the four hydroxylmethyl groups (X) of the compound (2), 
which are subject to D2a(/C~). The first step is the oxidation of two of the four 
hydroxymethyl groups. The oxidation produces several compounds (3) having 
two carboxyl (Y) and two hydroxylmethyl groups. The second step contains the 
reaction of the product with a chiral tert-alkyl alcohol (Q-OH or (~-OH) to 
produce derivatives (4) having ester and/or ether groups. Among them, let us 
obtain the number of possible derivatives having one ester group and one ether 
group. 
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Step 2 i Q-OH or Q-OH 
¥ 

- (coo~),~ 

--(CH~O - Q)< 
- ( coo  - Q),~ 
-(coo-q),~. 

4 0 

Fig. 2. Two-step conversion for illustrating the superposition 

For  the first step, we consider the ligand par t i t ion [0] = [2, 2; 0; 0]. Then,  we 
have: 

CI(H, )  CI(St21 (~ S [ 2 ] )  1 2 1 4 = = ( ~ ( s ,  + s2))  2 = + + a(s, 2s~s2 s 2) 

CI (H])  CI($[2]®$ t21) 1 2 2s~b2 + s~). = = ( ~ ( s ,  + s~) )  2 = ¼(«4 + 

For  the second step, we consider the ligand part i t ion [.0'] = [2; 1; 1]. This 
t rea tment  is based on the p resumpt ion  that  one Q and one Q occupy two of  the 
reaction posit ions wi thout  taking account  of  the first step, i.e., whether  these are 
carboxyl  or  hydroxymethyl  groups.  The remaining two posit ions are not  occu- 
pied in this step. Hence,  we have: 

CI(H2) = CI(S  [21 ® $'[1])  1 2 1 2 = ~(sl c2 + = ~(s, + s2)c2 s2c2) 

CI(H2) = CI(S[21 ® $m ® $t~1) = ~(bl 21 -~- b2)b 21 = ~tb. 1 0 1 1  ._2 ~.2 + s2b~) 

Consider  the superposi t ion of  [0] and [0'] onto  the site part i t ions produced  f rom 
the D2d(/Cs) orbit. Hence,  Theo rem 7 (equivalently Lemmas  4 and 5) affords: 

Q[oo.]c, = N { ( C I ( H ] )  ® (CI(H'2) @ b4))} = ~  x ~ x ( 1 4 4 ! ) 2 1  1 ~-  72 

g[oo'1«2 = N{(CI(H'~) ® (CI(H'2) ® b2))} = 0 

ë[oo'~«~ = N{(CI(H'~) ® (CI(H'2) ® b~))} = 0 
1 1 2 ~ 1 1  2 = = ( 1 2 . 2 1 . )  4 @[oo'lc~ N{(CI(H1)  ® (CI(H2) ® a~c2))} a × 2 x ~ × = 
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and 

~too'ls4 = N{(CI(H~) ® (CI(H2) ® c4))} = 0 

~Ioo'jc» = N{(CI(H~) ® (CI(H2) ® a]))} = 0 

Qtoo'j»2 = N{(CI(H]) ® (CI(H~) ® b,))} = 0 

493 

Œ[OO'l»2d = N{(CI(H~) ® (CI(H2) ® a4))} = 0 

where the SCI-CFs are adopted from the D2a(/C 0 row of Table 1. Using 
Theorem 1, we obtain: 

(72 0 0 4 0 0 0 0)M - ~ = ( 8  0 0 2 0 0 0 0), (114) 

where M-1  is the matrix form of Table 2. Therefore, we have eight C~- and two 
Cs-derivatives in this enumeration. On the basis of these results, we can easily 
verify Theorems 8 and 9. 

Alternatively, the same result is obtained as follows. The two-step reaction 
produces three types of derivatives, i.e., X2Qr.Qr (meso), y2QxÔ~ x (meso), and 
XYQxQy (enantiomeric), where X = CH2OH , Y = COOH, Qx = CH2OQ, 
(~x =CH20(~,  Qr=COOQ, and 0 r  =COO(~. By applying Lemma 1 and 
Theorem 1 to the respective cases [30], we can obtain: 

(1 0 0 1 0 0 0 0) forX2QrQ_r, 

(1 0 0 1 0 0 0 0) for y2QxQx, 

and 

(6 0 0 0 0 0 0 0) forXYQxO_r. 

When we sum up these row vectors, we obtain the same vector as Eq. 
(114). [] 

6. Conclusion 

Two methodologies based on unit subduced cycle indices (USCI) are discussed 
for enumerating chemical compounds or other objects. We take account of 
chirality fittingness in order to treat such objects that contain achiral and chiral 
ligands. First, we define subduced cycle indices (SCI), partial cycle indices (PCI) 
and cycle indices (CI) by starting from the USCIs, all of which are accompanied 
with chirality fittingness. These indices provide generating functions which are 
applied to solve enumeration problems. Second, we introduce the  concept of 
elementary superposition, which is also versatile to combinatorial enumeration. 
On the basis of this concept, we give an alternative proof and an extension of the 
Read-Redfield superposition theorem. 

Appendix A 

Elementary superposition without chirality fittingness 

This appendix is devoted to deriving the elementary superposition theorem, in 
which no chiral ligands are taken into consideration. We have already proved 
this theorem by starting from the Read-Redfield superposition theorem [20]. 
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However, we are able to prove the elementary superposition theorem directly, 
from which the Read-Redfield superposition theorem is derived backward. Any 
group described hefe is a group of finite order unless otherwise stated. 

To begin with, we shall quote the cycle index of the symmetric group of order 
n, which is here denoted as S tnj [2]. 

1 
Sn CI(St"J; sa) = ~ va I1~1v212 v2" " ' Vn !n v" s~1s~2 . . . .  ~ ( 1 1 5 )  (v) 

where the summation runs over all partitions (v): 

(~). lv~ (116) 
l 

We consider the ligand partition represented by Eq. (14), in which we take 
only achiral ligands into consideration. Then, we introduce the direct product: 

H 0 = 5 [01l ~) 5 [021 (~"  " " (~ S [Om]. ( 1 1 7 )  

The cycle index of H ° is represented by the equation [2]: 

CI(H°;  Sd) = CI(S[°']; Sd) X C1(5[°21; Sd) × " " " × CI(S[°"]; sa) (118) 

1 
= iHO{ ~'~~' N(~,)s~'~s~ ~ ' ' "  s~", (119) 

where the partition represented by the cycle structure (bi') runs over: 

(#'): ~ l#~ = m  (=IAI), (120) 
l = l  

and where the symbol N~,) denotes the number of permutations having the cycle 
structure (#'). Note that the cycle structure ((#')) is associated with the ligand 
partition [0]. 

For evaluating Q0«, we consider SCIs derived by substituting s for the 
variables (a, b, and c) of the SCI-CFs (Def. 1 (2)) [14]. We rewrite the SCIs to 
b e :  

s(a j ;  %k) = o,o~,où2o2 

where the partition is determined to 

(~)" 
1=1 

Note that the SCI (Eq. (121)) is a 
specified by the subduction to Gj. 

ù "S~m m ( j = l , 2  . . . .  ,S), (121) 

be a specific set of integers of the equation: 

l m = m  (=lA I). (122) 

monomial having the partition ((#)) that is 

Let us now consider a set (F) of configurations in which the m positions of 
the site partition ((#)) accommodate the set of ligands ( X ° I X  °2. • • X ° , ) .  Each of 
the configurations may belong to G s or to a supergroup of Gj. When we apply 
the permutations of the H ° to one of these configurations, we obtain equivalent 
configurations. This means that the F is partitioned by the action of H ° into 
several equivalence classes (i.e., orbits) and that the value O0j can be regarded as 
the number of the orbits. Therefore, we obtain the following equation by means 
of the Cauchy-Frobenius lemma (so-called Burnside's lemma) [28]. 

1 
n~h), (123) 

~°J -  IHOl h~,,o 

where n~h » denotes the number of configurations that  are fixed by h e H °. 
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If  a permutation h (e  H °) fixes the configuration having the site partition 
((#)), it must possess the same cycle structure as Eq. (122), i.e., ( # ' ) =  (#). A 
suborbit of length l in the configuration has l ligands of the same kind. The 
suborbit is fixed by an/-cycle contained in the permutation (h). If  the ligands in 
the suborbit are permuted cyclically, the resulting configuration is also fixed on 
the action of h; there are l different ways for each suborbit of length l and l ul 
ways in all. Moreover, we are able to alter the order of the suborbits of length 
l in #t! ways. When l runs from 1 to m, we have: 

#1!1~'#2!2 m ' "  • I*m!m vm ( =  n<h)) (124) 

configurations that are fixed by h. This result holds for such a permutation that 
has the same cycle structure as h. The number of such operations is denoted by 
the symbol No, ). Thereby, Eq. (123) is converted into: 

N(u) Itl ! 1 gtl]~ 2 !2 "2" (125) ~oj = ~ • • I.tm !m*',ù. 

If we apply t h e .  operation [5, 4] to this case, we obtain: 

- NOO r,, Vl~*, Y2 u2 CI(H°;sa)  *S(Gj;sa»)  - i H O [ ~ ~ ,  ,2. . .  "#m!mUm)S~'S~2"''S~ m. (126) 

Let the symbol N{. • "} denote the sum of the coefficients of the polynomial in the 
braces. We employ this symbol, although Eq. (126) comprises a monomial. It 
follows that: 

N { C I ( H ° ; s d )  * S(Gj;Sa/k)} =~~ö~, t* ,  ù2. " "]~m!mIZm). (127) 

Comparison between Eq. (125) and Eq. (127) affords the following theorem. 

Theorem I0 (Elementary superposition) 
The 00j value is obtained by: 

NO')' ! 11"/~2!2 ~.2 Imm~ (128) 
o o j =  i H O l . ,  " ' ' ~ m "  • 

= N{CI(H°;  sa) * S(Gj; sa»)} ( j  = 1, 2 , . . ,  s). (129) 

If  the 00j values obtained by this theorem are introduced into Theorem 1, we can 
obtain the numbers of non-equivalent configurations, which are itemized with 
respect to the weight W o as well as to the symmetry Gj. 

This theorem is a special case of Theorem 4. Note that the ® operation 
involves • operation as a special case. 

Let us consider H ° (E = 1, 2 , . . . ,  t) that are associated with an appropriate 
ligand partition [0~o], as discussed for H °. Theorem 10 is true for the H °. It 
follows that: 

Q ~~) = N { C I (  H°  ; ca) * S(Gj; sa,~) }, (130) 

where 0~~ denote the number of fixed configurations on the effect of H °. Then, 
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we construct the product represented by: 

Ooj = I-I ~'~(OoJ 
¢ = 1  

= lZI N{C~r(H~; sc) • S(««; s~jk)} 
é = l  

-~~1.] (~l!l"'"2!2~2 " " " #m!m"m)~ (131) 

(132) 

where the last equality symbol comes from the definition of the • operation [5]. 
The symbol ~r(~» denotes the number of permutations corresponding to the single , (#)  

N(u ) in Eq. (125). The product symbol with an asterisk represents a multiplica- 
tion concerning the • operation. Hence, we have the following extension of 
Theorem 10. 

Theorem 11 (Multicomponent elementary superposition) 
The O0j values are represented by: 

~0~__~{(.~«1~~o~~~~),~~o~~~~~»}~~~ ~ j ~ ~  ~~ ~~3~~ 

Since the equation in the braces of Eq. (129) (and Eq. (133)) is a monomial, it 
indicates an essential nature of the superposition theorem. Accordingly, we refer 
to this theorem as the elementary superposition. 

We formally apply the • operation to a partial subduced cycle index without 
chirality fittingness (PCI), which is derived by substituting s for a, b, and c in the 
PCI-CF (Def. 1 (3)) and denoted by P(Gi; Sdjk). As a result, we have: 

= J=,~ rhj,-N {(" ~=1 f l  «I(H°;Sd) )*S(Gj;Sd»)}  " (134) 

Comparison between Eq. (133) and Eq. (134) affords the following theorem. 

Theorem 12 (Multicomponent partial superposition) 
The number Bo~ of non-equivalent (Wo, G~)-configurations is represented by: 

Boi = ~', OoThji 
j = l  

= N ~ ( *  ~I CI(H°;Sd)~.P(Gi;Sdjk)~ ( i = 1 , 2  . . . . .  s). (135) 
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It should be noted that, if G/is a chiral group, the values of  each enantiomeric 
pair should be added to obtain a correct value. This note will be effective 
throughout the present report. 

Let us hext construct the • operation concerning the CI, which is derived by 
substituting s for a, b, and c in the CI-CF (Def. 1 (4')) and denoted by 
CI(Gi;s«jk) [15]. Hence, we have: 

:N{i~l((*éOl«I(HO~sd))~P(Gi'~Sdjk))} 

Comparison between Eq. (136) and Theorem 12 affords the following theorem. 

Theorem 13 (Multicomponent superposition) 
The number Bo of  non-equivalent Wo-configurations is represneted by: 

Bo = ~ Boi 
i = 1  

This theorem is equivalent to the Read-Redfield superposition theorem. Further 
derivation starting from Theorem 10 and applications are described elsewhere 
[20, 25]. 

It is worthwhile comparing the present results with the Read-Redfield 
superposition theorem. In Theorem 13, the treatment of a point group G is 
distinct from that of  a permutation group H °. However, such discrimination is 
unnecessary to be considered, if G is a permutation group. Obviously, the present 
derivation also holds for such a case. In this meaning, Theorem 13 is equivalent 
to the Read-Redfield Theorem. It should be emphasized that the present 
theorem is based on the concept of elementary superposition, which enables us 
to obtain more detailed results that are itemized with respect weights and 
symmetries. 

On the other hand, Theorem 9 is somewhat different, since it manipulates 
chiral ligands as weil as achiral ones. Does this theorem hold for the case in 
which G is a permutation group? This problem is open to further investigation. 
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